CODE - A

Batch - 2001+2002+2003+2005 [Engg]

Time : 3 Hours

Maximum Marks : 360

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose. You are not allowed to leave the Examination Hall before the end of the test.

INSTRUCTIONS

A. General:

- 1. This booklet is your Question Paper containing 90 questions.
- 2. The Question Paper **CODE** is printed on the right hand top corner of this booklet. This should be entered on the OMR Sheet.
- 3. Fill the bubbles completely and properly using a **Blue/Black Ball Point Pen** only.
- 4. Blank papers, clipboards, log tables, slide rules, calculators, cellular phones, pagers, and electronic gadgets in any form are not allowed to be carried inside the examination hall.
- 5. The answer sheet, a machine-readable Optical mark recognition sheet (OMR Sheet), is provided separately.
- 6. DO NOT TAMPER WITH / MUTILATE THE OMR OR THE BOOKLET.
- 7. Do not break the seals of the question-paper booklet before being instructed to do so by the invigilator.
- B. Question paper format & Marking Scheme :
- 8. The question paper consists of **3 parts** (Physics, Chemistry and Maths).
- 9. The test is of **3 hours** duration. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.

Name of the Candidate (in Capitals)

Test Centre _____

Centre Code _____

Candidate's Signature _____

Invigilator's Signature _____

PHYSICS

J

- The electric potential V at any point (x, y, z) (all in metre) in space is given by $V = 4 x^2$ volt. The electric 1. field at the point (1, 0, 2) in V/m is
 - (a) 16 along +x-axis (b) 8 along neg. x-axis (c) 8 along + x-axis (d) 16 along neg. x-axis
- 2. Four electric charges +q, +q, -q and -q are placed at the corners of a square of side 2 L as shown in figure. The electric potential at point A midway between the two charges +q and +q is
 - (a) $\frac{1}{4\pi\epsilon_0} \frac{2q}{L} \left(1 \frac{1}{\sqrt{5}}\right)$ (b) Zero 2I(c) $\frac{1}{4\pi\epsilon_1} \frac{2q}{L} \left(1 + \frac{1}{\sqrt{5}}\right)$ (d) $\frac{1}{4\pi\epsilon_{0}}\frac{2q}{L}(1+\sqrt{5})$
- 3. In a region, the potential is represented by V(x, y, z) = 6x - 8xy - 8y + 6yz, where V is in volt and x, y, z are in meter. The electric force experienced by a charge of 2 C situated at point (1, 1, 1) is
 - (a) $4\sqrt{35}$ N (b) $6\sqrt{5}$ N (c) 30 N(d) 24 N
- Charges +q and -q are placed at points A and B respectively, which are at a distance 2 L apart. C is mid 4. point of A and B. Work done in moving a charge +Q along the semicircle CRD, figure, is
 - (a) $\frac{qQ}{2\pi \epsilon_0 L}$ (b) $\frac{qQ}{6\pi \in L}$ (d) $\frac{qQ}{4\pi \in_0 L}$ (c) $-\frac{qQ}{6\pi \in L}$ л
- 5. Two identical charged spheres suspended from a common point by two massless strings of length l, are initially at a distance x (x $\ll l$) apart because of their mutual repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, the spheres approach each other with a velocity v. Then vvaries as a function of distance x between the spheres as
 - (c) $v \propto x^{-1}$ (b) $v \propto x^{-1/2}$ (d) $v \propto x^{1/2}$ (a) $v \propto x$
- The dimensional formula of electric potential is 6.

(a)
$$[MLT^2 A^{-1}]$$
 (b) $[ML^2T^2 A^{-1}]$ (c) $[ML^2 T^3 A^{-1}]$ (d) $[ML^2 T^3 A^{-2}]$

- 7. There is an electric field in x-direction. If work done on moving a charge 0.2 C through a distance of 2 m along a like making an angle of 60° with x-axis is 4.0 J. What is the value of E?
 - (a) $\sqrt{3} N/C$ (b) 4 N/C(c) 5 N/C(d) None of these

8. Kinetic energy of an electron accelerated in a potential difference of 100 V is

(a)
$$1.6 \times 10^{-17}$$
 J (b) 1.6×10^{21} J (c) 1.6×10^{-29} J (d) 1.6×10^{-34}

- 9. Two point charges -q and +q are located at points (0, 0-a) and (0, 0, a), respectively. The potential at a point P(0, 0, z) where z > a is
 - (c) $\frac{2qa}{4\pi\varepsilon_0(z^2-a^2)}$ (d) $\frac{2qa}{4\pi\varepsilon_0(z^2+a^2)}$ (b) $\frac{q}{4\pi\epsilon_0 a}$ (a) $\frac{qa}{4\pi\varepsilon_0 z^2}$

NEWTON TUTORIALS

10. Three charges, each +q, are placed at the corners of an isosceles triangle ABC of sides BC and AC = 2 a. D and E are the mid points of BC and CA. The work done in taking a charge Q from D to E is

(a) zero
(b)
$$\frac{3qQ}{4\pi \in_0 a}$$

(c) $\frac{3qQ}{8\pi \in_0 a}$
(d) $\frac{qQ}{4\pi \in_0 a}$

1 m

1 m

(d) first (b) then (a)

There are four point charges +q, -q, +q and -q placed at the corners A, B, C and D respectively of a 11. square of side a. The potential energy of the system is $\frac{1}{4\pi\varepsilon_0}$ times.

- (b) $\frac{q^2}{2a} \left(-4 + \sqrt{2}\right)$ (a) $\frac{q^2}{q} \left(-4 + \sqrt{2}\right)$ (d) $\frac{-4\sqrt{2}q^2}{q}$ (c) $\frac{4q^2}{q}$ C(+q)
- 12. Two charges q_1 and q_2 are placed 30 cm apart, as shown in figure. A third charge q_3 is moved along the arc of a circle of radius 40 cm from C to D. The change in the potential energy of the system is
 - $\frac{q_3}{4\pi \in_0} k$, where k is (a) $8 q_2$ 40cm (b) $6 q_2$ (c) $8 q_1$ (d) $6 q_1$
- 13. Three point charges of 1C, 2 C and 3 C are placed at corners of an equilateral triangle of side 1 m. Work required to move these charges to the corners of a smaller equilateral triangle of side 0.5 will be

(b) increases

- (a) 9.9×10^{10} J
- (b) 9.9×10^9 J
- (c) 9.9×10^8 J
- (d) 9.9×10^{11} J
- 14. When a dielectric material is introduced between the plates of a charged condenser, then electric field between the plates
 - (a) decreases
- A parallel plate capacitor is filled with two dielectrics as shown in figure. Its capacity has ratio with 15. capacity without dielectric as
 - (b) $\left(\frac{K_1 + K_2}{2}\right)$ (a) $(K_1 + K_1)$ K₁ (c) $\left(\frac{K_1K_2}{K_1+K_2}\right)$ (d) $2(K_1 + K_2)$

(c) remains constant

16.	Which of the following particles will describe the smallest circle when projected with the same velocity perpendicular to the magnetic field?							
	(a) Electron	(b) Proton	(c) α -particle	(d) Deutron				
17. A particle having positive charge is released from rest in an electric field acting horizontally an under the influence of both electric field and gravity. Which one of the following quantities c with the charge particles continuously increase with time?								
	(a) Electric potential er	nergy	(b) Gravitational po	(b) Gravitational potential energy				
	(c) Electrical charge		(d) Kinetic energy					
18.	If a charged particle enters perpendicular in the uniform magnetic field, then							
	(a) energy and angular momentum both remain constant							
	(b) energy remains con	stant but angular momentu	m changes					
	(c) both energy and ang	gular momentum change						
	(d) energy changes but	angular momentum remain	ns constant					
19.	An electron and a proto of the following is true	on enters a magnetic field p ?	erpendicularly. Both ha	we same kinetic energy. Which				
	(a) Trajectory of electro	on is less curved	(b) Trajectory of pro	(b) Trajectory of proton is less curved				
	(c) Both trajectories are	e equal	(d) Both move in straight line path					
20.	The cyclotron frequence	cy of an electron orbiting in	a magnetic field of 1 T	is approximately				
	(a) 28 MHz	<mark>(</mark> b) 280 M Hz	(c) 2.8 G Hz	(d) 28 G Hz				
21.	In the figure, the electr	on enters into the magnetic	e field. It deflects in <mark>d</mark>	irection ^y × × × ×				
	(a) +ve X-direction			x x x x				
	(b)-ve X-direction			e				
	(c) +ve Y-direction			<u>, </u>				
	(d)-ve Y-direction							
22.	If the strength of the m 10^{-5} weber/m ² , the value	nagnetic field produced 10 ue of the current flowing in	cm away from an infin the conductor will be	itely long straight conductor is				
	(a) 5 A	(b) 10 A	(c) 500 A	(d) 1000 A				
23.	A wire in the form of a the square wire is (Mag	a square of side <i>a</i> carries a gnetic permeability of free	current <i>I</i> . The magnetic space $= \mu_0$)	field induction at the centre of				
	(a) $\frac{\mu_0 I}{2\pi a}$	(b) $\frac{\mu_0 I \sqrt{2}}{\pi a}$	(c) $\frac{2\sqrt{2}\mu_0 I}{\pi a}$	(d) $\frac{\mu_0 I}{\sqrt{2}\pi a}$				
24.	A wire of length L is be	ent into a semicircle. The n	nagnetic field at the cen	tre is				
	(a) $\frac{\mu_0 \pi I}{4L}$	(b) $\frac{\mu_0 I}{4\pi L}$	(c) $\frac{\mu_0 I}{\pi L}$	(d) $\frac{\mu_0 I}{4L}$				
25.	A circular coil of radiu coil?	is 10 cm and 100 turns carr	ries a current 1 A. What	is the magnetic moment of the				
	(a) 3.142 Am ²	(b) $3142 \times 10^4 \text{ Am}^2$	(c) 3 Am^2	(d) 10^4 Am^2				

- 26. A current carrying conductor is bent into a quarter of a circle of radius R as shown in figure. The magnetic field at the centre O is
 - (a) $\frac{\mu_0 I}{8R}$ inwards (b) $\frac{\mu_0 I}{8R}$ outwards (c) $\frac{\mu_0 I}{4R}$ inwards (d) $\frac{\mu_0 I}{4R}$ outwards
- 27. A long, straight wire is turned into a loop of radius 10 cm figure. If a current of 8 A is passed through the loop, then the value of the magnetic field and its direction at the centre C of the loop shall be close to
 - (a) 5.0×10^{-5} N A⁻¹ m⁻¹, upward (b) 3.4×10^{-5} N A⁻¹ m⁻¹, upward
 - (c) 1.6×10^{-5} N A⁻¹ m⁻¹, downward

(d)
$$1.6 \times 10^{-5} \text{ N A}^{-1} \text{ m}^{-1}$$
, upward

- 28. A thin ring of radius *R* metre has charge *q* coulomb uniformly spread on it. The ring rotates about its axis with a constant frequency of *f* revolutions/s. The value of magnetic induction in Wb/m² at the centre of the ring is
 - (a) $\frac{\mu_0 q f}{2\pi R}$ (b) $\frac{\mu_0 q}{2\pi f R}$ (c) $\frac{\mu_0 q}{2f R}$ (d) $\frac{\mu_0 q f}{2R}$
- 29. In the figure shown, there are two semicircles of radii r_1 and r_2 in which a current *I* is flowing. The magnetic field induction at the centre *O* will be
 - (a) $\frac{\mu_0 I}{2} (r_1 + r_2)$ (b) $\frac{\mu_0 I}{4} (r_1 - r_2)$ (c) $\frac{\mu_0 I}{4} (\frac{r_1 + r_2}{r_1 r_2})$ (d) $\frac{\mu_0 I}{4} (\frac{r_2 - r_1}{r_1 r_2})$
- 30. Refer to figure, the magnitude of magnetic field induction at point O due to current *I* in the arrangement is
 - (a) $\frac{\mu_0}{4\pi} \frac{I}{r}$ (b) $\frac{\mu_0}{8\pi} \frac{I}{r}$ (c) $\frac{\mu_0}{4\pi} \frac{I}{r} (1+\pi)$ (d) $\frac{3\mu_0 I}{8r}$

8

8 A

900

40.

41.

42.

43.

44.

45.

46.

39. The correct statement about the compound A, B and C

water are 1.86 and 0.512 K kg mol⁻¹ respectively, the above solution will freeze at : (b) $-0.654^{\circ}C$ (c) $6.54^{\circ}C$ $(d) - 6.54^{\circ}C$ (a) $0.654^{\circ}C$

Reg. Office

 $(K'_{\epsilon} = 1.86 \text{ K molality}^{-1})$

- 47. 18 g glucose ($C_6 H_{12} O_6$) is added to 178.2 g of water. The vapour pressure of water for this aqueous solution at 100°C is:
 - (a) 759 torr (b) 7.60 torr (c) 76 torr (d) 752.4 torr

48. Relationship between osmotic pressure at 273 K when 1% glucose (π_1) , 1% urea (π_2) , 81% sucrose (π_3) , are dissolved in 1 litre of water :

- (a) $\pi_1 > \pi_2 > \pi_3$ (b) $\pi_2 > \pi_1 > \pi_3$ (c) $\pi_3 > \pi_1 > \pi_2$ (d) $\pi_1 = \pi_2 = \pi_3$
- 49. A 0.004 M solution of Na₂SO₄ is isotonic with a 0.010 M solution of glucose at same temperature. The apparent degree of dissociation of Na₂SO₄ is :

- 50. The amount of ice that will separate out on cooling a solution containing 50 g of ethylene glycol in 200 g water to -9.3° C is :
 - (a) 38.71 g (b) 38.71 mg (c) 42 g (d) 42 mg
- 51. Rate of reaction $A + B \longrightarrow C$ is given below as function of different initial concentrations of A and B.

	[A] mol L ⁻¹	[B] mol L ⁻¹	Initial rate				
1.	0.01	0.01	0.005				
2.	0.02	0.01	0.010				
3.	0.01	0.02	0.005				
Determine the order with respect to A and B.							
(a)	1,0	(b) 0, 1	(c <mark>) 1, 1</mark>	(d) 2, 1			

- 52. The rate of reaction between A and B increases by a factor of 1000 when concentration of A is changed from 0.5 mol L^{-1} to 5 mol L^{-1} . The order of reaction with respect to A is
 - (a) 0 (b) 1 (c) 2 (d) 3
- 53. For reaction $A \to B$, the rate constant $k_1 = A_{1e^{-E_{a1}/RT}}$ and for the reaction $P \to Q$, the rate constant

 $k_2 = A_{2e^{-E_{a_2}/RT}}$ If $A_1 = 10^8$, $A_2 = 10^{10}$ and $E_{a_1} = 600$, $E_{a_2} = 1200$, then the temperature at which $k_1 = k_2$ is

- (a) $\frac{600}{R}$ (b) $300 \times 4.606R$ (c) $\frac{600}{4.606R}$ (d) $\frac{4.606}{600R}$
- 54. There are two reactions $X \longrightarrow$ Products and $Y \longrightarrow$ Products have rate constants k_1 and k_2 at temperature T and activation energies E_1 and E_2 respectively.

If $k_1 > k_2$ and $E_1 < E_2$. Assuming that the Arrhenius factor is same for both the temperatures, then

- (a) On increasing the temperature, the increases in k_2 will be greater than increase in k_1
- (b) On increasing the temperature, the increases in k_1 will be greater than increase in k_2
- (c) At lower temperature, k_1 will be closer to k_2
- (d) At lower temperature, $k_1 < k_2$

- 55. For an endothermic process, where ΔH represents the enthalpy of reaction in kJ/mol, the minimum value for the energy activation will be
 - (a) Less than ΔH (b) Zero (c) More than ΔH (d) Equal to ΔH

56. Three faradays of electricity are passed through molten Al_2O_3 , aqueous solution of $CuSO_4$ and molten NaCl in three different electrolytic cells. The amount of Al, Cu, Na deposited at the cathodes will be in mole ratio of

	(a) 1:2:3	(b) 1:1:5:3	(c) 3:2:1	(d) 1:5:2:3
57.	Given :	$Hg_2^{2+} + 2e^- \Longrightarrow 2Hg$	$E^\circ = 0.789 V$	
		$Hg^{+2} + 2e^{-} \Longrightarrow Hg$	$E^\circ = 0.854 V$	
	Calculate the equilibrium	constant for Hg_2^{+2}	$Hg + Hg^{+2}$	
	(a) 3.13×10^{-3}	(b) 3.13×10 ⁻⁴	(c) 6.26×10^{-3}	(d) 6.26×10^{-4}
58.	The saturated reduction point for the above couple K_{SP}	otential for Cu ⁺² /Cu is of Cu(OH) ₂ is 1×10 ⁻¹⁹	s +0.34 Volt. Calculate	e reduction potential at pH = 14
	(a) 0.2214 V	(b) -0.2214V	(c) 2.214 V	(d) 0.1107 V
59.	Reduction potential diagra $Cu^{+2} \xrightarrow{0.15 \text{ volt}} Cu^{+} \xrightarrow{0.15} Cu^{+} 0.$	m for Cu in acid solutions of the solution of	on is (c) 0.032 V	(d) 0.325 V
60.	For $I_2 + 2e^- \longrightarrow 2I^-$, sta	ndard reduction potenti	al = 0.54 volt	
	For $2Br^- \longrightarrow Br_2 + 2e^-$ s	standard oxidation poter	ntial = -1.08 volt	
	For $Fe^{2+} + 2e^- \longrightarrow Fe$ st	andard red <mark>uction potent</mark>	ial = -0.44 volt	
	Which of the following rea	actions is non–spontane	ous?	
	(a) $Br_2 + 2I^- \longrightarrow 2Br^- +$	I ₂	(b) $Fe + Br_2 \longrightarrow Fe$	$^{2+} + 2Br^{-}$
	(c) $Fe + I_2 \longrightarrow Fe^{2+} + 2I_2$	-	(d) $I_2 + 2Br^- \longrightarrow 2$	$I^- + Br_2$

				MATHS				
61.	If $g(x^3+1) = x^6 + x^3 + 2$,	then the value of $g(x^2 - 1)$) is:					
	(a) $x^4 - 3x^2 + 3$	(b) $x^4 + x^2 + 4$	(c) $x^4 - 3x^2 + 4$	(d) $x^4 + x + 2$				
62.	Let $f: R \to R$ be defined as $f(x) = x^{12} - x^9 + x^4 - x + 1$, then:							
	(a) f is one-one function		(b) the equation $f(x) =$	= 0 possesses real roots				
	(c) the equation $f'(x) = 0$	has no real roots	(d) $f(x)$ takes only positive for the formula of $f(x)$ takes only positive for $f(x)$ takes on $f(x)$	sitive values				
63.	The domain of the functio	n						
	$f(x) = (x+0.5)^{\log_{(0.5+x)}\left(\frac{x^2+2}{4x^2-x^2}\right)}$	$\left(\frac{2x-3}{4x-3}\right)$ is						
	(a) $\left(-\infty, -3\right) \cup \left(\frac{-1}{2}, 1\right) \cup \left(\frac{-1}{2},$	$\left(\frac{3}{2},\infty\right)$	(b) $\left(-\infty, -3\right) \cup \left(\frac{-1}{2}, \frac{1}{2}\right) \cup \left(\frac{1}{2}, 1\right) \cup \left(\frac{3}{2}, \infty\right)$					
	$(c)\left(\frac{1}{2},1\right)\cup\left(\frac{3}{2},\infty\right)$		(d) $\left(\frac{-1}{2},\frac{1}{2}\right) \cup \left(\frac{1}{2},1\right) \cup \left(\frac{1}{2},1\right)$	$\left(\frac{3}{2},\infty\right)$				
64.	Let $P(x) = \left(x^2 + 2kx + \frac{3}{4} + \frac{3}{4}\right)$	-k). If graph of $P(x)$ doe	es not intersect y-axis, the	n the range of k is				
	(a) $\left(-\infty,\frac{3}{4}\right)$	(b) $\left(\frac{3}{4},\infty\right)$	(c) $\left[\frac{-3}{2}, \frac{1}{2}\right]$	(d) <i>φ</i>				
65.	If the equation $ 2-x - x $	-1 = k has exactly one solution	ution, them number of inte	egral values of k is				
	(a) 7	(b) 5	(d) 4	(d) 3				
66.	For $x \neq \frac{n\pi}{2}$ where $n \in I$, the	ne range of function						
	$f(x) = \operatorname{sgn}(\sin x) + \operatorname{sgn}(\operatorname{csin} x)$	$\cos(x) + \operatorname{sgn}(\tan x) + \operatorname{sgn}(\cos x)$	$\cot x$) is equal to:					
	[Note: sgn x denotes signu	Im function of x.]						
	(a) {-2,4}	(b) $\{-2, 0, 4\}$	(c) $\{-4, -2, 0, 4\}$	(d) $\{0,2,4\}$				
67.	The value of x satisfying t	he equatio <mark>n</mark>						
	(a) $\left(\sqrt{\pi}\right)^{\log_{\pi} x} \cdot \left(\sqrt{\pi}\right)^{\log_{\pi^2} $	$(\sqrt{\pi})^{\log_{\pi^4} x} \cdot (\sqrt{\pi})^{\log_{\pi^8} x} \dots \infty =$	= 3 is equal to:					
	(a) $\sqrt{\pi}$	(b) <i>π</i>	(c) 3	(d) $\frac{1}{3}$				
68.	The range of function $f(x)$	$x = \log_2 \left(\frac{\pi + 2\sin^{-1} \left(\frac{3 - \pi}{7} \right)}{\pi} \right)$	$\left(\frac{x}{x}\right)$ is equal to:					
	(a) $\left(-\infty,1\right)$	(b) (1,∞)	(c) $(-\infty, 1]$	(d) $[1,\infty)$				

Reg. Office

69. The greatest value of the function

$$f(x) = \sum_{n=1}^{3} \left(\left(\sin^{2} x \right)^{n} + \left(\cos^{2} x \right)^{n} \right) \text{ for all } x \in R \text{ is equal to:}$$
(a) 1
(b) 3
(c) $\frac{7}{4}$
(d) 5
(e) $\frac{1}{4}$
(f) 5
(f) $\frac{1}{1-|x|}$
(g) $\frac{1}{2}$

Α

(a) Statement -1 is true, Statement -2 is true and Statement -2 is not a correct explanation for Statement - 1 (b) Statement -1 is true, statement -2 is false (c) Statement -1 is false and statement -2 is true (d) Statement -1 is true, statement -2 is true, statement -2 is a correct explanation for Statement -1. If equation of tangent to the curve $y = -e^{-x/2}$ where it crosses the y-axis is $\frac{x}{a} + \frac{y}{b} = 1$, then (a-b) is 78. equal to: (a) - 3(b) -2(c) 2(d) 379. The normal to the curve $x = a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta)$ at any point θ is such that (a) it makes a constant angle with the x – axis. (b) it passes through the origin (c) it is at a constant distance from the origin (d) none of the above If the curve $\frac{x^2}{c} + \frac{y^2}{4} = 1$ and $y^2 = 16x$ intersect at right angles, then c is equal to: 80. (b) $\frac{1}{2}$ (a) $\frac{3}{4}$ (c) $\frac{4}{2}$ (d) 2 If the largest possible interval in which $f(x) = x^3 + 6x^2 + px + 7$ is decreasing function is (-3, -1), then 81. the value of p is equal to: (c) 9(d) 11 (a) 5(b) 6The value of $5 \cdot \cot\left(\sum_{k=1}^{5} \cot^{-1}\left(k^2 + k + 1\right)\right)$ is equal to 82. (a) $\frac{5}{2}$ (d) $\frac{7}{2}$ (b) 7 (c) -7Range of $f(x) = \sin^{-1} \log[x] + \log(\sin^{-1}[x])$, where [] denotes GIF is 83. (c) $\left\{\log\frac{\pi}{2}\right\}$ (b) {0} (d) None of these (a) $\{1\}$ If the equation $5 \arctan(x^2 + x + k) + 3 \arctan(x^2 + x + k) = 2\pi$, has two distinct solutions, then the 84. range of k, is (b) $\left(-\infty, \frac{5}{4}\right)$ (c) $\left(\frac{5}{4}, \infty\right)$ (d) $\left(-\infty, \frac{5}{4}\right)$ (a) $\left(0, \frac{5}{4}\right)$ 85. If $\cot^{-1}\left(\frac{n^2 - 10n + 21 \cdot 6}{\pi}\right) > \frac{\pi}{6}$, $n \in N$, then find the minimum value of n. (a) 2 (b) 3 (c) 4 (d) None of these

86.	Find the sum of greatest and least value of; $(\sin^{-1} x)^3 + (\cos^{-1} x)^3$.						
	(a) $\frac{6\pi^3}{8}$	(b) $\frac{7\pi^3}{8}$	(c) $\frac{9\pi^3}{8}$		(d) None of these		
87.	If A and B are square $(a + b)^n$	matrices of the sam	e order and A is	s nonsingular, th	en for a positive integer		
	$n, (A^{-1}BA)^n$ is equal to						
	(a) $A^{-n}B^nA^n$	(b) $A^n B^n A^{-n}$	(c) $A^{-1}B$	$B^n A$	(d) $n\left(A^{-1}BA\right)$		
88.	If $A^2 - A + I = 0$, then	the inverse of A is					
	(a) A^{-2}	(b) $A+I$	(c) $I - A$	1	(d)		
		$\cos 2x \sin^2 x \cos x$	4x				
89.	When the determinant	$\sin^2 x \cos 2x \cos^2 x \cos^2 x$	x is expanded i	in powers of sin	x, then the constant term		
	in that expression is	005 4 005 1 005					
	(a) 1	(b) 0	(c) –1		(d) 2		
	3 4 5 x						
90.	If $\Delta = \begin{vmatrix} 4 & 5 & 6 & y \\ 5 & 6 & 7 & z \end{vmatrix} = 0$), then					
	$\begin{vmatrix} x & y & z & 0 \end{vmatrix}$						
	(a) x, y, z are in A.P.	(b) x, y, z are in G	. P. (c) <i>x, y</i> ,	z are in H.P.	(d) none of these		

MAGNUM OPUS

ANSWER KEY

PHYSICS									
1	2	3	4	5	6	7	8	9	10
В	Α	Α	С	В	С	D	Α	С	Α
11	12	13	14	15	16	17	18	19	20
Α	Α	Α	Α	В	Α	D	С	В	D
21	22	23	24	25	26	27	28	29	30
D	Α	С	Α	Α	Α	В	D	С	D
CHEMISTRY									
31	32	33	34	35	36	37	38	39	40
В	Α	D	Α	В	В	В	Α	D	Α
41	42	43	44	45	46	47	48	49	50
В	D	С	С	В	В	D	В	С	Α
51	52	53	54	55	56	57	58	59	60
Α	D	С	Α	С	В	С	В	D	D
				MA	TH <mark>S</mark>				
61	62	63	64	65	66	67	68	69	70
С	D	D	D	В	В	С	С	В	Α
71	72	73	74	<mark>75</mark>	<mark>76</mark>	77	78	79	80
С	В	D	D	Α	С	Α	D	С	D
81	82	83	84	<mark>85</mark>	<mark>86</mark>	87	88	89	90
С	В	С	В	В	D	С	С	С	Α